Measurement of mechanical properties of three epoxy adhesives at cryogenic temperatures for CCD construction

H. Cease, P.F. Derwent, H.T. Diehl, J. Fast, D. Finley Fermi National Accelerator Laboratory Batavia IL 60510

November 6, 2006

Abstract

Materials testing of an adhesive for bonding Silicon to a substrate is presented. Test results include Young's Modulus, Poisson's Ratio, and the coefficient of thermal expansion at temperatures ranging from room temperature to 100 K. Data for 3 epoxies (Tra-Con F113, Epotek 301-2, Hysol 9361) are presented.

1 Introduction

The SNAP CCD focal plane has to meet stringent performance requirements, especially on flatness. As the CCDs are manufactured at room temperature and will operate at 130 K in space, it is necessary to characterize their behavior as a function of temperature. In addition, it is expected that the CCD focal plane will undergo thermal cycles in space. As the construction materials (Si, AlN, SiC) have different coefficients of thermal expansion (CTE), there may be stress on all of the epoxy joints. NASA has criterion on the stress/strength relation for such joints [1]. This note details tensile strength tests and coefficient of thermal expansion measurements on proposed epoxies for use in the CCD assembly.

Tensile strength tests to measure Young's Modulus and Possion's Ratio [2] were performed at Precision Measurements and Instruments Corporation (PMIC) [3] at 5 temperatures (295K, 250K, 200K, 150K, 100K). An additional measurement was made at Fermilab at 295K. Measurements of the CTE from 77 K to 295 K were made at Fermilab.

Three epoxies were measured, Hysol 9361, Tra-Con F113, and Epotek 301-2. The Hysol is being considered for the AlN-SiC joint, the Tra-Con and Epotek for the CCD-AlN joint. In Table 1, we summarize the properties of the glue joints as reported by the manufacturer.

The Hysol sets in 24 hours, with a full cure in 7 days at room temperature. The epoxy samples used in the tensile strength tests had a 7 day cure. For the Hysol CTE measurements, we used a sample with am accelerated 2 day cure. For the Epotek and Tra-Con CTE measurements, measurements were made with samples with both a 2 day cure and a 7 day cure. The Epotek epoxy has an additional manufacturing specification on residuals ions (salts) in the resin which is important for silicon bonding applications.

Epoxy	Modulus	Viscosity	CTE @ 295 K
Hysol 9361	723 MPa	1000 Pa s	-
Tra-Con F113	-	180 cps @25 C	55 ppm/C
Epotek 301-2	-	225-425 cps	37 ppm/C

Table 1: Epoxy properties as provided by the manufacturers.

Ambient

	Elastic Modulus (psi)	356886 ± 12523	3.51%
Tra-Con F113	Poisson's Ratio	$0.401 {\pm} 0.003$	0.64%
	Maximum Stress (psi)	2539 ± 86	3.40%
	Elastic Modulus (psi)	531427 ± 6166	1.16%
Epotek 301-2	Poisson's Ratio	0.358 ± 0.001	0.35%
	Maximum Stress (psi)	3751 ± 45	1.21%
	Elastic Modulus (psi)	154678 ± 1526	0.99%
Hysol 9361	Poisson's Ratio	$0.433 {\pm} 0.007$	1.67%
	Maximum Stress (psi)	1153± 9	0.77%

Table 2: Epoxy properties as measured at ambient temperatures.

2 Tensile Tests

Tensile tests were performed by PMIC and also the Fermilab Material Testing Group. Both tests used samples prepared at Fermilab. The samples were dogbone shaped and machined out of cast plates of epoxy. The samples were degassed to minimize the number and size of air bubbles. We note that the Hysol samples did have visible bubbles on the machined surfaces.

PMIC measurements were performed per ASTM method D-638. Five dogbones of each epoxy were measured at 5 temperatures (295K, 250K, 200K, 150K, 100K). The sample modulus was calculated using the Secant Method at a 0.68% strain (or the highest strain achieved if the sample failed before that level). The Hysol samples did fail before 0.68% strain was achieved for the lower temperature measurements. Tables 2, 3, 4, 5, and 6 summarize the measurements. The full report from PMIC is included as Appendix 1.

The Fermilab Material Testing group also performed a tensile measurement at ambient temperature on the three epoxies. The steepest slope over a series of ranges was used to calculated

 $250~\mathrm{K}$

	Elastic Modulus (psi)	519361 ± 16547	3.19%
Tra-Con F113	Poisson's Ratio	0.372 ± 0.005	1.25%
	Maximum Stress (psi)	3527 ± 120	3.41%
	Elastic Modulus (psi)	595903 ± 16547	3.19%
Epotek 301-2	Poisson's Ratio	0.365 ± 0.004	1.05%
	Maximum Stress (psi)	4115± 79	1.91%
	Elastic Modulus (psi)	239242 ± 4375	1.83%
Hysol 9361	Poisson's Ratio	0.435 ± 0.004	1.02%
	Maximum Stress (psi)	1736 ± 35	2.02%

Table 3: Epoxy properties as measured at 250 K.

 $200~\mathrm{K}$

	Elastic Modulus (psi)	615588 ± 26807	4.35%
Tra-Con F113	Poisson's Ratio	0.368 ± 0.003	0.69%
	Maximum Stress (psi)	4272 ± 198	4.64%
	Elastic Modulus (psi)	648860 ± 12482	1.92%
Epotek 301-2	Poisson's Ratio	0.349 ± 0.005	1.32%
	Maximum Stress (psi)	4471 ± 99	2.22%
	Elastic Modulus (psi)	560786 ± 11976	2.14%
Hysol 9361	Poisson's Ratio	0.357 ± 0.005	1.27%
	Maximum Stress (psi)	3912 ± 84	2.15%

Table 4: Epoxy properties as measured at 200 K.

 $150~\mathrm{K}$

	Elastic Modulus (psi)	886035 ± 40429	4.56%
Tra-Con F113	Poisson's Ratio	0.367 ± 0.008	2.28%
	Maximum Stress (psi)	5983 ± 264	4.42%
	Elastic Modulus (psi)	833220 ± 14089	1.69%
Epotek 301-2	Poisson's Ratio	0.334 ± 0.007	2.16%
	Maximum Stress (psi)	5681 ± 106	1.87%
	Elastic Modulus (psi)	822654 ± 14072	1.71%
Hysol 9361	Poisson's Ratio	0.357 ± 0.012	3.46%
	Maximum Stress (psi)	4641 ± 79	1.71%

Table 5: Epoxy properties as measured at 150 K.

 $100~\mathrm{K}$

	Elastic Modulus (psi)	1105895 ± 40675	3.69%
Tra-Con F113	Poisson's Ratio	0.348 ± 0.005	1.44%
	Maximum Stress (psi)	7092 ± 649	9.15%
	Elastic Modulus (psi)	1014310 ± 14384	1.42%
Epotek 301-2	Poisson's Ratio	0.350 ± 0.008	2.34%
	Maximum Stress (psi)	6783 ± 162	2.39%
	Elastic Modulus (psi)	1132056 ± 13051	1.19%
Hysol 9361	Poisson's Ratio	0.353 ± 0.016	4.55%
	Maximum Stress (psi)	$4225 \pm\ 201$	4.76%

Table 6: Epoxy properties as measured at 100 K.

Ambient

	Elastic Modulus (ksi)	384.84 ± 85.7	22.2%
Tra-Con F113	Ultimate Tensile Strength (psi)	4798.2 ± 569.1	11.9%
	Elastic Modulus (ksi)	650.6 ± 176.2	% 27.1
Epotek 301-2	Ultimate Tensile Strength (psi)	9664.2 ± 1769.6	18.3%
	Elastic Modulus (ksi)	137.5 ± 17	12.3%
Hysol 9361	Ultimate Tensile Strength (psi)	2400.4 ± 190.6	7.94%

Table 7: Epoxy properties as measured at ambient temperatures by the Fermilab Material Properties Testing group.

the modulus. The crosshead pull speed was greater than 0.05 inches per minute. The results are summarized in Table 2.

3 Coefficient of Thermal Expansion Measurements

CTE measurements were made at Fermilab. The measurements were performed in the spirit of ASTM-E831. Samples were approximately $8 \text{ mm} \times 8 \text{ mm} \times 20 \text{ mm}$, machined from samples cast in a mold. Each sample was vacuum degassed during the casting to minimize the size and number of trapped gas bubbles.

The CTE was measured by placing the sample in a holder inside of a cryostat. Liquid nitrogen is poured into the cryostat. Once the temperature stabilized at 77 K, a heater is used to ramp the temperature to ambient temperature with a rate of 1-2deg C/minute. An LVDT [4] at the top of the sample measured the change in sample length. The length and temperature were recorded during the cooldown and the warmup. In Figure 1, we show a picture of the sample in the holder. The LVDT is at the top of the picture, connected via quartz rods to the sample holder. The sample holder is installed inside the cryostat. We report the integral fractional change in length (dL/L) of the sample as a function of temperature in Table 8. In Figures 2, 3, and 4, we show the fractional change in length as a function of temperature for one sample of Tra-Con F113, Epotek 301-2, and Hysol 9361. In Figure 5, we show a representative time ramp for one of the measurements.

4 Stress/Strength Ratios

The NASA guideline for epoxy joints [1] is a safety margin of a factor of 2 on the stress. With the measured modulus and CTE, we can calculate the expected stress on the joint and compare to yield strength, using the following logic:

$$\begin{array}{rcl} \text{Modulus} & = & \frac{\text{Stress}}{\text{Strain}} \\ & \text{Strain} & = & \frac{\text{dL}}{\text{L}} \\ & \frac{\text{dL}}{\text{L}} \text{ (epoxy)} & = & \text{CTE (epoxy)} \times \Delta \text{T} \end{array} \tag{1}$$

With the assumption that the CTE of the substrate is small compared to the epoxy, the stress on the joint is simply:

$$Stress = Modulus \times CTE (epoxy) \times \Delta T$$
 (2)

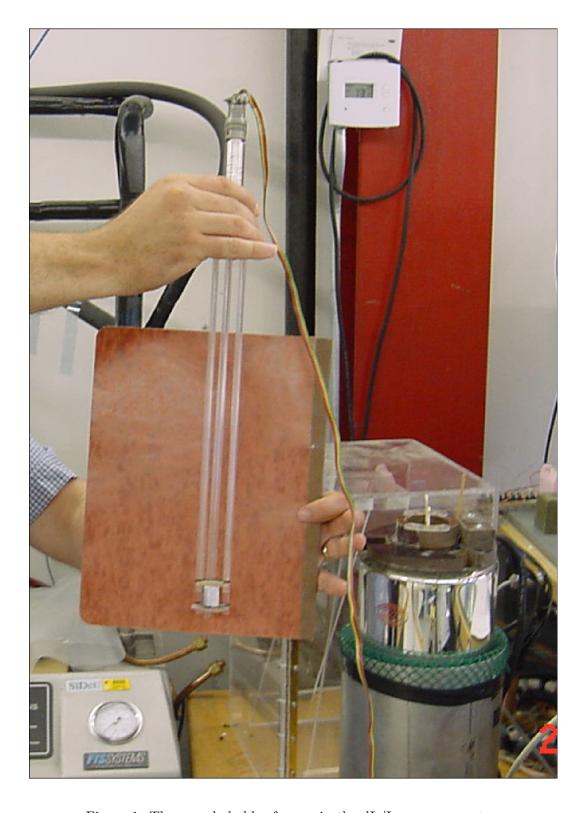


Figure 1: The sample holder for use in the dL/L measurements.

Ambient Temp	erature	
Tra-Con F113 dL/L ($\times 10^{-3}$)	_	_
Epotek 301-2 dL/L ($\times 10^{-3}$)	_	_
Hysol 9361 dL/L ($\times 10^{-3}$)	_	_
250 K		
Tra-Con F113 dL/L ($\times 10^{-3}$)	-3.27 ± 0.13	3.94%
Epotek 301-2 dL/L ($\times 10^{-3}$)	-2.83 ± 0.04	1.52%
Hysol 9361 dL/L ($\times 10^{-3}$)	-4.69 ± 0.04	0.8%
200 K		
Tra-Con F113 dL/L ($\times 10^{-3}$)	-6.20 ± 0.11	1.73%
Epotek 301-2 dL/L ($\times 10^{-3}$)	-5.45 ± 0.03	0.59%
Hysol 9361 dL/L ($\times 10^{-3}$)	-8.69 ± 0.02	0.3%
150 K		
Tra-Con F113 dL/L ($\times 10^{-3}$)	-8.71 ± 0.06	0.76%
Epotek 301-2 dL/L ($\times 10^{-3}$)	-7.70 ± 0.11	1.37%
Hysol 9361 dL/L ($\times 10^{-3}$)	-11.3 ± 0.003	0.2%
100 K		
Tra-Con F113 dL/L ($\times 10^{-3}$)	-10.7 ± 0.08	0.72%
Epotek 301-2 dL/L ($\times 10^{-3}$)	-9.66 ± 0.18	1.88%
Hysol 9361 dL/L ($\times 10^{-3}$)	-13.3 ± 0.03	0.2%

Table 8: Integral dL/L for the three epoxies as measured at the 5 temperatures.

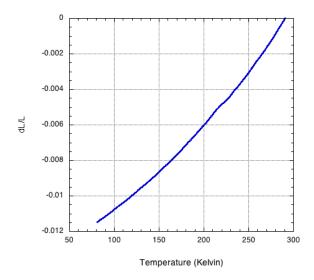


Figure 2: The integral dL/L vs temperature for a representative Tra-Con F113 sample.

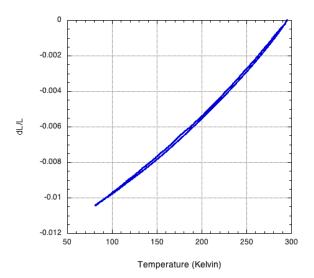


Figure 3: The integral dL/L vs temperature for a representative Epotek 301-2 sample.

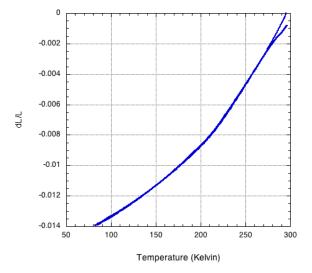


Figure 4: The integral dL/L vs temperature for a representative Hysol 9361 sample.

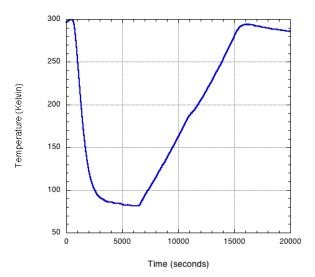


Figure 5: The temperature vs time for a representative CTE measurement.

	Ambient	250 K	200 K	150 K	100 K
Tra-Con F113	-	2.8	1.1	0.76	0.65
Epotek 301-2	_	5.9	2.7	1.5	1.0
Hysol 9361	_	2.1	0.83	0.5	0.29

Table 9: The ratio of strain to stress as defined in equation 3.

A criterion that the yield strength must be more than twice the stress leads to the requirement that

$$\frac{\text{yield strength (epoxy)}}{\text{Modulus} \times \text{CTE (epoxy)} \times \Delta T} > 2.$$
 (3)

The stress reported in the data sets is not the epoxy yield strength, it is the strength at 0.68% strain. A conservative guideline can still be determined if the maximum stress achieved is used in the calculations as a proof stress. We will use either the room temperature ultimate strength or the maximum stress applied to the sample at temperature, whichever is larger. As the strength is known to increase with decreasing temperature, this selection is a conservative approach. In Table 9, we show the ratio of strength over stress as defined above.

The Epotek has the lowest bond strain and, at ambient temperature, the highest ratio of maximum strength to strength at 0.68%. Although none of the epoxies meet the criteria for temperatures below 200 K, it does not mean the joint will fail. We have chosen to take a conservative approach in the calculation of the maximum stress. In addition, the tensile strength data collected was taken at high pull rates (0.10 inch/minute for the PMIC tests). Epoxies, as with most plastics, are visco-elastic materials which respond differently based on how quickly the load is transferred to the material. The high rates of strain applied to the samples during testing will have a much higher modulus and stress than in the actual application. During flight, the CCD focal plane will have a cool down rate of 3 degrees per minute, taking at least 20 minutes to achieve operating temperature and allowing the epoxy to creep and relieve some

of the stresses.

5 Conclusions

We have presented measurements on epoxy properties for use in the SNAP CCD assembly, covering temperatures from ambient to 100 K. Test results on Young's Modulus, Poisson's Ratio, and integral dL/L have been presented. A criterion for the epoxy has been proposed.

References

- [1] NASA-STD-5001 Structural Design and Test Factors of Safety for Spaceflight Hardware
- [2] Young's Modulus is the ratio of tensile stress to tensile strength and is a measure of how a material changes length under tension or compression. Poisson's Ratio is defined as the strain normal to an applied load divided by the strain in the direction of the applied load and is a measure of the material's tendency to get thinner as it is stretched or thicker as it is compressed.
- [3] Precision Measurements and Instruments Corporation, 3665 SW Deschutes Street, Corvallis, OR 97333
- [4] LVDT stands for Linear Variable Differential Transformer, outputting a voltage dependent upon physical displacement.

FERMILAB

PURCHASE ORDER NUMBER 565015

ELASTIC PROPERTY MEASUREMENTS OF EPOXY SPECIMENS

February 28, 2006

HERMAN CEASE MECHANICAL ENGINEER TEL: 630-840-6453

> FERMILAB 500 Wilson Road Batavia, IL 60510

TESTING SERVICES PROVIDED BY

PRECISION MEASUREMENTS AND INSTRUMENTS CORPORATION 3665 SW Deschutes Street Corvallis, OR 97333 USA

> TEL: 541-753-0607 FAX: 541-753-0610

Fermilab 12687 Page 1 of 10

2.1

...

ELASTIC PROPERTY MEASUREMENTS OF EPOXY SPECIMENS

WORK CONDUCTED FOR FERMILAB PURCHASE ORDER NUMBER 565015

February 28, 2006

Precision Measurements and Instruments Corporation measured the elastic properties of 75 epoxy resin specimens. Coupons were prepared for Modulus testing and Poisson's Ratio testing. Testing was conducted at 100K, 150K, 200K, 250K and ambient temperatures. Testing was performed per ASTM method D-638. Results are presented in the attached tables. A brief description of the test procedure, data analysis and comments on the results follow.

Specimen Description

Fermilab provided the following specimens:

Quantity	Description	Length	Width	Thickness
35	Tracon F113	8.0"	1.0"	0.125"
35	Epo-Tek 301-2	8.0"	1.0"	0.125"
33	Hysol ES 9361	8.0"	1.0"	0.125"

Test Procedure

♦ Specimen Check-In

The specimens were received on December 19th, January 11th and January 12th, via Federal Express. The specimens were inspected for damage. No damage was observed. However, it was noted that the Hysol specimens had bubbles visible on the machined surfaces. The specimens were stored at room temperature prior to measurement. A complete list of the specimens is located at the end of the report.

Specimen Preparation

The specimen preparation and strain gage attachment procedures suggested by the strain gage supplier were followed. Micro-Measurements CEA-06-125UT-350 strain gages were used for both axial and lateral strain measurement on the specimens. Strain gages were bonded to each side of the specimen at corresponding positions, using Micro-Measurements M-Bond AE-10 adhesive. The specimens were clamped and cured for 6+ hours at ≤95°F. Each gage was then wired in series to the corresponding gage on the opposite surface to account for specimen bending. In a few cases the strain gages were shifted axially on the specimen to avoid placing them close to the bubbles.

◆ Test Procedure

The tensile test machine crosshead speed was set to 0.10 inch/minute. 2 VDC strain gage excitation was used. The specimens were first secured in the machine with the top wedge grip, centered and aligned with the direction of force. For the low temperature tests thermocouples

Fermilab 12687 Page 2 of 10 were placed at three points in the vicinity of the strain gages. The gauge portion of the specimen was enclosed in an insulated chamber. Liquid nitrogen was used to achieve cooling for the 100 K, 150 K, 200 K and 250 K tests. The cryogen was directed close to the proximity of the specimens on either side by dual spray bars. Approximately 20-60 minutes was allowed for the specimens to equilibrate at the desired temperatures. At this point the strain gage conditioning circuitry was balanced, the lower wedge grip tightened and the test started. The load was applied to the specimens by movement of the upper grip until the limits of the strain gage were reached, failure occurred, or the specimens began to yield outside of the gauge section. Load, strain and temperature data were recorded every half second.

Analysis

The various elastic properties were calculated over certain strain ranges selected to coincide with a level obtained by all, or nearly all, specimens. The first data point used for all calculations was generally the first positive point after all slack was removed. The last data point was generally the limit of the axial strain gage/electronics, ~6800 µ-strain. In some cases the last point was limited by breakage or yielding outside of the temperature controlled zone. In a few cases the endpoints were shifted somewhat due to unusual temperature fluctuations. The secant modulus was calculated by taking the change in axial stress divided by the change in axial strain between the chosen endpoints. Poisson's Ratio was calculated by using the change in transverse strain divided by the change in axial strain at the same endpoints. The nominal dimensions were used in all of the calculations.

Test Results

The results are presented in tabular format in **Table 1**. The stress and strain of the maximum endpoint at which each property is calculated are listed with the results. The properties may be determined for other strain ranges. The raw stress and strain data is being supplied to the requesting engineer.

Some of the specimens broke during the test. The location of the break was always in the area of the specimen held by the upper grip or right beneath it. All but two of the broken specimens were in the Hysol group. In this group, three out of five of the 100 K specimens broke, all of the 150 K specimens broke, and one of the ambient specimens broke. This could have been due to bubbles which were visible in these specimens. In every case of a break, a bubble could be seen in the fractured surfaces. In one of the Hysol specimens the strain gage was slightly offset vertically in order to avoid a bubble. This specimen did not break. In addition, one of the EpoTek specimens broke, at 200 K, and one of the Tracon specimens broke, at 100 K.

Possible sources of error include the presence of bubbles in the specimens, the impact of the strain gages on the material and temperature gradients. Digital control of the cryogen flow also induced some degree of temperature fluctuation, which is evident in some of the strain data.

Fermilab 12687 Page 3 of 10 Please contact our technical staff at (541) 753-0607 if you have any questions or require additional information regarding these measuréments.

Submitted by:

Don Schneider

Project Engineer

Ann Gaidos-Morgan
Test Technician

Precision Measurements and Instruments Corporation hereby claims that test results are obtained by techniques based on relevant ASTM standards, calibrations with NIST standard reference materials and/or published procedures. Thus, we accept no liability for test results beyond the cost of the contract rendered.

Fermilab 12687 Page 4 of 10

TABLE 1, ELASTIC MODULUS AND POISSON'S RATIO

	Maximum	Stress	psi	2,324	2,637	2,771	2,611	2,353	2539	1	3,808	3,791	3,852	3,596	3,708	the	3751	1,158	1,175	1,122	1,162	1,149	1153	
ر ک	Maximum	Strain	%	89.0	69.0	0.69	0.68	69.0			69.0	69.0	69.0	69.0	69.0			69.0	0.68	0.68	0.68	69.0		
Ambient (295 K)	Poisson's	Ratio		0.394	0.407	0.405	0.403	0.396	0.401	9000	0.353	0.358	0.360	0.359	0.358	0.358	0.003	0.452	0.434	0.408	0.433	0.439	0.433	0.016
Ar	Elastic	Modulus	psi	327,203	369897	390047	369262	328019	356,886	28,002	541511	537859	542696	510312	524758	531,427	13,787	155524	159339	150281	155573	152674	154,678	3,413
	Specimen	₽		TB 5 5	TB 6 5	TB 8 5	TB 9 5	TB 11 5	ave	st dev	ET_1_5	ET 2.5	7_7	ET_19_5	ET 20 5	ave	st dev	HS 14 5	HS 15 5	HS 16 5	HS 17 5	HS_18_5	ave	st dev

Fermilab 12687

TABLE 1, ELASTIC MODULUS AND POISSON'S RATIO

	Maximum Stress	isd	4258	4295	4559	3550	4698	4272		4421	4738	4181	4374	4642	1244		4229	3734	3901	3870	3825	39.12	
	Maximum Strain	%	0.69	0.68	0.68	0.68	0.67			0.68	0.68	0.68	0.68	0.68			0.69	69.0	0.69	0.68	0.69		-
200 K	Poisson's Ratio	1000	0.367	0.370	0.371	0.359	0.374	0.368	0.006	0.344	0.358	0.333	0.351	0.357	0.349	0.010	0.347	0.351	0.366	0.369	0.351	0.357	0.010
	Elastic Modulus	psi	607,451	613,755	651,835	522,938	681,959	615,588	59,943	634,469	678,932	608,731	654,185	667,985	648,860	27,910	603,769	536,650	561,845	561,774	539,892	560,786	26,780
	Specimen ID	L	o.	ဖ	TB 8 3	TB 11 3	TB 9_6	ave	st dev	ET 13	ET 7 3	ET 19 3	ET 20 3	ET 2 3+	ave	st dev	HS 14 3	HS 15 3	HS 16 3	HS 17 3	HS_18_3	ave	st dev

·					_			_	_		_				_									
Maximum Stress	psi	0889	6262	6384	6393	4994	23/82			5364	5795	5932	5501	5814	1895			4616	4596	4885	4709	4398	1696	
Maximum Strain	%	0.68	69.0	0.69	0.68	69.0				0.68	0.68	69.0	69.0	69.0				69.0	0.54	0.59	0.54	0.55		
Poisson's Ratio		0.355	0.365	0.358	0.399	0.356	0.367	0.019		0.327	0.351	0.319	0.322	0.352	0.334	0.016		0.322	0.365	0.394	0.365	0.338	0.357	0.028
Elastic Modulus	psi	873,958	911,669	939,767	968,010	736,770	886,035	90,402		825,968	869,247	852,639	785,872	832,372	833,220	31,505		781,235	858,394	817,672	849,032	806,935	822,654	31,467
Specimen ID		TB 5_2	TB_6_2	TB 8 2	TB 9 2	TB_11_2	але	st dev		ET_1_2	ET_2_2	ET 7.2	ET 19 2	ET_20_2	ave	st dev		HS_14_2	HS_15_2	HS_16_2	9	HS 17 6	ave	st dev
	Elastic Poisson's Maximum Modulus Ratio Strain	Elastic Poisson's Maximum Modulus Ratio Strain psi %	Elastic Poisson's Maximum Modulus Ratio Strain % 873,958 0.355 0.68	Elastic Poisson's Maximum Modulus Ratio Strain % 873,958 0.355 0.68 911,669 0.365 0.69	Elastic Poisson's Maximum Modulus Ratio % % 873,958 0.355 0.68 911,669 0.365 0.69	Elastic Poisson's Maximum Modulus Ratio % % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68	Elastic Poisson's Maximum Modulus Ratio Strain % % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69	Elastic Poisson's Maximum Modulus Ratio % % % % % % % % % % % % % % % % % % %	Elastic Poisson's Maximum Nodulus Ratio % psi % % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69 886,035 0.367 0.69 90,402 0.019 0.019	Elastic Poisson's Maximum Modulus Ratio % % 873,958 0.355 0.68 911,669 0.365 0.69 959,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69 886,035 0.367 90,402 0.019	Elastic Poisson's Maximum Nodulus Ratio % psi % % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69 886,035 0.367 0.09 90,402 0.019 0.068	Elastic Poisson's Maximum Nodulus Ratio % psi % % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69 886,035 0.019 0.09 825,968 0.327 0.68 869,247 0.351 0.68	Elastic Poisson's Maximum Nodulus Ratio % psi % % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69 886,035 0.019 0.09 825,668 0.327 0.68 869,247 0.351 0.68 852,639 0.319 0.69	Elastic Poisson's Maximum Nodulus Ratio % psi % % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69 886,035 0.019 0.68 825,668 0.327 0.68 869,247 0.351 0.68 852,639 0.319 0.69 785,872 0.322 0.69	Elastic Poisson's Maximum Nodulus Ratio % psi % % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69 886,035 0.019 0.68 825,668 0.327 0.68 869,247 0.351 0.68 852,639 0.319 0.69 785,772 0.352 0.69	Elastic Poisson's Maximum Posi Maximum % psi % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69 886,035 0.019 0.68 869,247 0.351 0.68 869,247 0.351 0.69 785,872 0.322 0.69 832,372 0.352 0.69 833,220 0.334 0.69	Elastic poisson's Maximum Modulus psi Ratio % % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69 886,035 0.019 0.68 869,247 0.327 0.68 862,639 0.319 0.69 785,872 0.322 0.69 832,372 0.352 0.69 833,220 0.334 0.69 833,220 0.334 0.016	Elastic Poisson's Maximum Nodulus Psi Xatio % Psi % % % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69 886,035 0.019 0.68 869,247 0.357 0.68 862,639 0.319 0.69 785,872 0.352 0.69 833,272 0.352 0.69 833,220 0.334 0.69 833,220 0.334 0.016	Elastic Poisson's Maximum Modulus Psi Ratio % % 951 % % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69 886,035 0.019 0.68 825,968 0.327 0.68 869,247 0.351 0.69 785,872 0.322 0.69 832,372 0.352 0.69 833,220 0.334 0.69 833,220 0.334 0.016 781,505 0.016 0.016	Elastic Poisson's Maximum Nodulus Ratio % psi % % 873,958 0.355 0.68 911,669 0.365 0.69 939,767 0.358 0.69 968,010 0.399 0.68 736,770 0.356 0.69 886,035 0.019 0.68 825,968 0.327 0.68 869,247 0.351 0.69 785,872 0.322 0.69 832,372 0.352 0.69 833,220 0.334 0.69 833,220 0.334 0.69 833,220 0.334 0.69 833,220 0.334 0.69 833,200 0.334 0.016 781,505 0.016 0.059 858,394 0.365 0.54	lD Modulus Ratio Strain % Nodulus Pai Strain % % % % % % % % % % % % % % % % % % %	lD Modulus Ratio Strain % Nodulus Ratio % Strain % % % % % % % % % % % % % % % % % % %	lD Modulus Ratio Strain % Nodulus Ratio % % % % % % % % % % % % % % % % % % %	lD Modulus Ratio Strain % Nodulus Ratio % % % % % % % % % % % % % % % % % % %

Fermilab 12687

TABLE 1, ELASTIC MODULUS AND POISSON'S RATIO

	Maximum	Stress	isd	7518	7671	7982	7777	4514	1866		6360	6570	7327	6865	6794	5849		4223	4479	4789	3602	4033	Sech	
	Maximum	Strain	%	0.69	69.0	69.0	69.0	0.45			0.69	0.69	69.0	69.0	69.0			0.39	0.39	0.41	0.31	0.40		
100 K	Poisson's	Ratio		0.361	0.351	0.331	0.352	0.344	0.348	0.011	0.359	0.326	0.375	0.347	0.343	0.350	0.018	0.367	0.314	0.317	0.394	0.374	0.353	0.036
	Elastic	Modulus	psi	1,115,620	1,084,636	1,176,787	1,190,017	962,414	1,105,895	91,153	1,002,227	1,022,622	1,062,459	1,009,726	974,514	1,014,310	32,164	1,095,470	1,121,990	1,177,256	1,141,779	1,123,786	1,132,056	30,190
	Specimen	⊇	ł	TB 5 1	TB 6 1	TB 8 1	TB 9 1	TB 11 1	ave	st dev	ET 1 1	ET 2 1	ET 7 1	ET 20 1	ET 19 1	ave	st dev	HS 14 1	HS 15 1	HS 16 1	HS 17 1	HS 18 1	ave	st dev

Fermilab 12687 Page 7 of 10

The following table is a listing of the Tracon test specimens.

1) Tracon F113 TB_5_1 (100K)	18) Tracon F113 TB_8_4 (250K)
8" X 1" X 0.13"	8" X 1" X 0.13"
2) Tracon F113 TB_5_2 (150K)	19) Tracon F113 TB 8 5 (300K)
8" X 1" X 0.13"	8" X 1" X 0.13"
3) Tracon F113 TB_5_3 (200K)	20) Tracon F113 TB 9 1 (100K)
8" X 1" X 0.13"	8" X 1" X 0.13"
4) Tracon F113 TB_5_4 (250K)	21) Tracon F113 TB 9 2 (150K)
8" X 1" X 0.13"	8" X 1" X 0.13"
5) Tracon F113 TB_5_5 (300K)	22) Tracon F113 TB 9 3 (200K)
8" X 1" X 0.13"	8" X 1" X 0.13"
6) Tracon F113 TB_5_6 (Spare)	23) Tracon F113 TB 9 4 (250K)
8" X 1" X 0.13"	8" X 1" X 0.13"
7) Tracon F113 TB_5_7 (Spare)	24) Tracon F113 TB 9 5 (300K)
8" X 1" X 0.13"	8" X 1" X 0.13"
8) Tracon F113 TB 6 1 (100K)	25) Tracon F113 TB 9 6 (Spare)
8" X 1" X 0.13"	8" X 1" X 0.13"
9) Tracon F113 TB 6 2 (150K)	26) Tracon F113 TB 11 1 (100K)
8" X 1" X 0.13"	8" X 1" X 0.13"
10) Tracon F113 TB 6 3 (200K)	27) Tracon F113 TB 11 2 (150K)
8" X 1" X 0.13"	8" X 1" X 0.13"
11) Tracon F113 TB 6 4 (250K)	28) Tracon F113 TB 11 3 (200K)
8" X 1" X 0.13"	8" X 1" X 0.13"
12) Tracon F113 TB_6_5 (300K)	29) Tracon F113 TB 11 4 (250K)
8" X 1" X 0.13"	8" X 1" X 0.13"
13) Tracon F113 TB_6_6 (Spare)	30) Tracon F113 TB 11 5 (300K)
8" X 1" X 0.13"	8" X 1" X 0.13"
14) Tracon F113 TB_6_7 (Spare)	31) Tracon F113 TB 11 6 (Spare)
8" X 1" X 0.13"	8" X 1" X 0.13"
15) Tracon F113 TB_8_1 (100K)	32) Tracon F113 TB 12 1 (Spare)
8" X 1" X 0.13"	8" X 1" X 0.13"
16) Tracon F113 TB_8_2 (150K)	33) Tracon F113 TB 12 2 (Spare)
8" X 1" X 0.13"	8" X 1" X 0.13"
17) Tracon F113 TB_8 3 (200K)	
8" X 1" X 0.13"	34) Tracon F113 TB_12_3 (Spare)
O X 1 X 0.10	8" X 1" X 0.13"
	35) Tracon F113 TB_12_4 (Spare)
	8" X 1" X 0.13"

Fermilab 12687 Page 8 of 10

The following table is a listing of the Epo-Tek 301-2 specimens.

36) Epo-Tek 301-2 ET_1_1 (100K)	53) Epo-Tek 301-2 ET 4 2 (Spare)
8" X 1" X 0.13"	8" X 1" X 0.13"
37) Epo-Tek 301-2 ET_1_2 (150K)	54) Epo-Tek 301-2 ET 7 1 (100K)
8" X 1" X 0.13"	8" X 1" X 0.13"
38) Epo-Tek 301-2 ET_1_3 (200K)	55) Epo-Tek 301-2 ET 7 2 (150K)
8" X 1" X 0.13"	8" X 1" X 0.13"
39) Epo-Tek 301-2 ET 1 4 (250K)	56) Epo-Tek 301-2 ET 7 3 (200K)
8" X 1" X 0.13"	8" X 1" X 0.13"
40) Epo-Tek 301-2 ET 1 5 (300K)	57) Epo-Tek 301-2 ET 7 4 (250K)
8" X 1" X 0.13"	8" X 1" X 0.13"
41) Epo-Tek 301-2 ET 2 1 (100K)	58) Epo-Tek 301-2 ET 7 5 (300K)
8" X 1" X 0.13"	8" X 1" X 0.13"
42) Epo-Tek 301-2 ET 2 2 (150K)	59) Epo-Tek 301-2 ET 19 1 (100K)
8" X 1" X 0.13"	8" X 1" X 0.13"
43) Epo-Tek 301-2 ET 2 3 (200K)	60) Epo-Tek 301-2 ET 19 2 (150K)
8" X 1" X 0.13"	8" X 1" X 0.13"
44) Epo-Tek 301-2 ET 2 4 (250K)	61) Epo-Tek 301-2 ET 19 3 (200K)
8" X 1" X 0.13"	8" X 1" X 0.13"
45) Epo-Tek 301-2 ET 2 5 (300K)	62) Epo-Tek 301-2 ET 19 4 (250K)
8" X 1" X 0.13"	8" X 1" X 0.13"
46) Epo-Tek 301-2 ET 2 6(Spare)	63) Epo-Tek 301-2 ET 19 5 (300K)
8" X 1" X 0.13"	8" X 1" X 0.13"
47) Epo-Tek 301-2 ET_3_1 (Spare)	64) Epo-Tek 301-2 ET 19 6 (Spare)
8" X 1" X 0.13"	8" X 1" X 0.13"
48) Epo-Tek 301-2 ET_3_2 (Spare)	65) Epo-Tek 301-2 ET 20 1 (100K)
8" X 1" X 0.13"	8" X 1" X 0.13"
49) Epo-Tek 301-2 ET_3_3 (Spare)	66) Epo-Tek 301-2 ET 20 2 (150K)
8" X 1" X 0.13"	8" X 1" X 0.13"
50) Epo-Tek 301-2 ET_3_4 (Spare)	67) Epo-Tek 301-2 ET 20 3 (200K)
8" X 1" X 0.13"	8" X 1" X 0.13"
51) Epo-Tek 301-2 ET_3_5 (Spare)	68) Epo-Tek 301-2 ET_20_4 (250K)
8" X 1" X 0.13"	8" X 1" X 0.13"
52) Epo-Tek 301-2 ET_4_1 (Spare)	69) Epo-Tek 301-2 ET_20_5 (300K)
8" X 1" X 0.13"	8" X 1" X 0.13"
	70) Epo-Tek 301-2 ET_20_6 (Spare)
	8" X 1" X 0.13"

Fermilab 12687 Page 9 of 10

The following table is a listing of the HYSOL 9361 HS Specimens.

71) HYSOL 9361 HS_14_1 (100K)	89) HYSOL 9361 HS_16_6 (Spare)
8" X 1" X 0.13"	8" X 1" X 0.13"
72) HYSOL 9361 HS_14_2 (150K)	90) HYSOL 9361 HS_16_7 (Spare)
8" X 1" X 0.13"	8" X 1" X 0.13"
73) HYSOL 9361 HS_14_3 (200K)	91) HYSOL 9361 HS 17 1 (100K)
8" X 1" X 0.13"	8" X 1" X 0.13"
74) HYSOL 9361 HS_14_4 (250K)	92) HYSOL 9361 HS 17 2 (150K)
8" X 1" X 0.13"	8" X 1" X 0.13"
75) HYSOL 9361 HS_14_5 (300K)	93) HYSOL 9361 HS_17_3 (200K)
8" X 1" X 0.13"	8" X 1" X 0.13"
76) HYSOL 9361 HS_14_6 (Spare)	94) HYSOL 9361 HS_17_4 (250K)
8" X 1" X 0.13"	8" X 1" X 0.13"
77) HYSOL 9361 HS_15_1 (100K)	95) HYSOL 9361 HS_17_5 (300K)
8" X 1" X 0.13"	8" X 1" X 0.13"
78) HYSOL 9361 HS_15_2 (150K)	96) HYSOL 9361 HS_17_6 (Spare)
8" X 1" X 0.13"	8" X 1" X 0.13"
79) HYSOL 9361 HS_15_3 (200K)	97) HYSOL 9361 HS 18 1 (100K)
8" X 1" X 0.13"	8" X 1" X 0.13"
80) HYSOL 9361 HS_15_4 (250K)	98) HYSOL 9361 HS_18_2 (150K)
8" X 1" X 0.13"	8" X 1" X 0.13"
81) HYSOL 9361 HS_15_5(300K)	99) HYSOL 9361 HS_18_3 (200K)
8" X 1" X 0.13"	8" X 1" X 0.13"
82) HYSOL 9361 HS_15_6 (Spare)	100) HYSOL 9361 HS_18_4 (250K)
8" X 1" X 0.13"	8" X 1" X 0.13"
83) HYSOL 9361 HS_15_7 (Spare)	101) HYSOL 9361 HS 18 5 (300K)
8" X 1" X 0.13"	8" X 1" X 0.13"
84) HYSOL 9361 HS_16_1 (100K)	102) HYSOL 9361 HS 18 6 (Spare)
8" X 1" X 0.13"	8" X 1" X 0.13"
85) HYSOL 9361 HS_16_2 (150K)	103) HYSOL 9361 HS_18_7 (Spare)
8" X 1" X 0.13"	8" X 1" X 0.13"
86) HYSOL 9361 HS_16_3 (200K)	
8" X 1" X 0.13"	
87) HYSOL 9361 HS_16_4 (250K)	
8" X 1" X 0.13"	
88) HYSOL 9361 HS_16_5 (300K)	
8" X 1" X 0.13"	

Fermilab 12687 Page 10 of 10